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Abstract

Purpose – To investigate the effect of aspect ratio on the quantitative analogy between developing
laminar flows in orthogonally rotating straight ducts and stationary curved ducts

Design/methodology/approach – A fractional step method is used to obtain the numerical
solution of the governing equations by decoupling the solution of the momentum equations from the
solution of the continuity equation. In order to clarify the similarity of the two flows, dimensionless
parameters KLR and Rossby number, Ro, in a rotating straight duct were used as a set corresponding
to Dean number, KLC, and curvature ratio, l, in a stationary curved duct.

Findings – Under the condition that the aspect ratio was larger than one and that the magnitude of
Ro or l was large enough to satisfy the “asymptotic invariance property” the quantitative analogy
between the two flows was established clearly.

Research limitations/implications – As the aspect ratio decreased below one, the difference
between the secondary flow intensities of these two flows increased, and therefore, the analogy
between the two flows was not as evident as that for the larger aspect ratios.

Practical implications – Based on this methodology, the characteristics of the developing flow in
orthogonally rotating ducts of higher aspect ratio can be predicted by considering the flow in
stationary curved ducts, and vice versa.

Originality/value – The results obtained in this study will suggest an optimal criterion for the
application of this approach to the flow similarity analysis in rectangular ducts with arbitrary aspect
ratios.
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Nomenclature
A ¼ aspect ratio =b/a
a ¼ duct width
b ¼ duct height

d ¼ pipe diameter
dh ¼ hydraulic diameter ¼ 2ab/(a þ b)
f ¼ fanning friction factor¼ 2 �tw=rw
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f0 ¼ friction factor for a stationary
straight duct flow ¼ 56.91/Re

KLR ¼ dimensionless parameter for laminar
flow in a rotating duct¼ Re=

ffiffiffiffiffiffi
Ro

p

KLC ¼ dimensionless parameter for laminar
flow in a curved duct or Dean
number¼ Re=

ffiffiffi
l

p

l ¼ length scale for axial direction¼
dh=

ffiffiffiffiffiffi
Ro

p
or dh=

ffiffiffi
l

p

p ¼ static pressure
p * ¼ modified

pressure¼ p2 1
2 rV

2ðx 2 þ z 2Þ
R ¼ mean radius of curvature
Re ¼ Reynolds number¼ wmdh=n
Ro ¼ Rossby number¼ wm=Vdh

u,v,w ¼ velocity components in the direction
of x, y, z

USC ¼ velocity scale of the secondary flow
(a stationary curved duct)¼ wm=

ffiffiffi
l

p

USR ¼ velocity scale of the secondary flow
(a rotating straight duct)¼ wm=

ffiffiffiffiffiffi
Ro

p

V s ¼ secondary flow magnitude¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 2 þ v 2

p

wm ¼ mean velocity
ZC ¼ dimensionless axial distance of a

stationary curved
duct¼ Ru=ðdh

ffiffiffi
l

p
Þ ¼ z=ðdh

ffiffiffi
l

p
Þ

ZR ¼ dimensionless axial distance of a
rotating straight duct¼ z=ðdh

ffiffiffiffiffiffi
Ro

p
Þ

Greek symbols

V ¼ angular velocity
c ¼ stream function
l ¼ curvature ratio¼ R=dh

n ¼ kinematic viscosity of the fluid
r ¼ density of the fluid
u ¼ bending angle of a stationary curved

duct

Subscript

max ¼ maximum value

Introduction
Fluid flows in rotating and curved ducts have attracted much attention for a long time
because of their relevance to various engineering applications such as cooling passages
of turbine blades, blade passages of centrifugal turbomachinery, heat exchangers, and
refrigeration equipments. Because of rotation and curvature effects, these examples all
feature secondary flow, which not only induces the pressure drop but also results in the
increased heat transfer rates.

For the flows through a straight duct subjected to a spanwise rotation, where the
rotation axis is normal to the longitudinal direction of the duct, the Coriolis force throws
fast-moving core flow in the direction of the cross product of the mean velocity and the
rotation vectors. The near-wall flow is driven from the pressure side to the suction side
of the duct along the wall regions to satisfy the continuity constraint. This onset of a
secondary flow increases the friction coefficient and wall heat transfer rate. The earliest
works on this subject focused on the theoretical investigation of laminar flow in a
“weakly rotating” (i.e. the effect of rotation can be negligible) circular pipe. By using a
perturbation expansion, Baura (1954) and Benton (1956) showed that the secondary
flow consists of a counter-rotating double-vortex configuration. With a substantial
increase in the rotational speed at sufficiently high Reynolds numbers, Speziale (1982)
and Kheshgi and Scriven (1985) found that the usual counter-rotating double-vortex
configuration breaks down into an asymmetric four-vortex configuration. Speziale and
Thangam (1983) calculated the secondary flows and roll-cell instabilities in the laminar
pressure-driven duct flow subjected to a spanwise rotation. They showed that there is a
considerable distortion of the axial velocity profiles in the Taylor-Proudman region,
resulting in a substantial reduction in the flow rate. Yang et al. (1994) presented a
detailed review of the literature on rotating duct flow.

Analogous flow patterns can be observed in a stationary curved duct because
longitudinal curvature produces a similar effect to that of spanwise rotation. When a
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viscous fluid flows through a curved duct, the streamline curvature generates a
centrifugal force that acts perpendicular to the primary flow direction and a secondary
flow is produced. This double counter-rotating secondary flow causes the symmetric
and quasi-parabolic axial velocity profile to become asymmetric, shifting the location
of the maximum axial velocity outward. The first major theoretical study of laminar
flow in a curved duct was performed by Dean (1927), who showed that the fully
developed laminar flow in “loosely curved” (i.e. the effect of curvature can be neglected)
ducts depends largely on a single dimensionless parameter, now known as the Dean
number. Winters (1987) performed a linear analysis of the Dean problem, and showed
that the two-vortex solution on the primary branch is stable to any arbitrary
two-dimensional perturbation, while the four-vortex solution is conditionally stable to
symmetric perturbations but unstable to asymmetric perturbations. Soh (1988)
numerically showed that the fluid flow in a curved duct develops into different
patterns, depending on the inlet condition. Thangam and Hur (1990) found that for
ducts of small curvature ratio the onset of transition from single vortex pair to double
vortex or roll cells depends on the Dean number and the curvature ratio, while for ducts
of large curvature ratio the onset can be characterized only by the Dean number. They
also proposed a correlation for the friction factor as a function of the Dean number and
aspect ratio. Berger et al. (1983) and Ito (1987) extensively reviewed the results of
previous studies concerning the secondary flow in a curved pipe.

To the best of the author’s knowledge, most previous studies of the analogy
between the flows through orthogonally rotating straight ducts and stationary
curved ducts have been qualitatively performed only for a circular cross section
(Trefethen, 1957; Ito, 1959; Ito and Nanbu, 1971). In the case of rectangular ducts,
the aspect ratio (i.e. the ratio of the duct height to its width) is one of the dominant
geometric constraints which affect the secondary flow patterns. Moore (1967)
revealed that the influence of rotation on velocity profiles and wall shear stresses is
quite large at low aspect ratios, whereas a much smaller effect is observed at high
aspect ratios. Jen and Lavine (1992) numerically investigated the effect of aspect
ratio on the laminar heat transfer and fluid flow in the entrance region of a rotating
duct. They showed that the number of vortex pairs strongly depend on the aspect
ratio of the duct.

The objective of the present study is to investigate the effect of aspect ratio on the
quantitative analogy between developing laminar flows in orthogonally rotating
straight ducts and stationary curved ducts using a fractional step solver and the
dimensionless parameters, successfully validated in previous papers (Lee and Baek,
2002a, b). It is expected that the results obtained in this study will suggest an optimal
criterion for the application of this approach to the flow similarity analysis in
rectangular ducts with arbitrary aspect ratios.

Governing equations
Figure 1(a) and (b) show the geometry of the physical model and its coordinate system
used for flow analysis in a rotating straight duct and a stationary curved duct of
rectangular cross-section, respectively. In a previous paper (Lee and Baek, 2001),
governing parameters were driven by applying appropriately scaled variables
(Ishigaki, 1999) to the Navier-Stokes equations. For simplicity, only the dimensionless
forms of the governing equations for the developing laminar flows of an

HFF
16,4

496



incompressible Newtonian fluid are considered herein (see Ishigaki (1999) for circular
pipe flows).

Rotating straight duct
As shown in Figure 1(a), the Cartesian coordinate system fixed to a straight duct that
rotates about the y-axis at a constant angular velocity V is used. The relative velocity
components in the direction of increasing (x,y,z) are denoted by (u,v,w). Here, u and v are
the velocity components of secondary flow in a cross-section, while w represents the
primary flow.

The following dimensionless variables are used to derive the dimensionless
governing equations (3)-(6):

~t ¼
wm

dh

ffiffiffiffiffiffi
Ro

p t; ~u ¼
u

wm

ffiffiffiffiffiffi
Ro

p
; ~v ¼

v

wm

ffiffiffiffiffiffi
Ro

p
; ~w ¼

w

wm
; ~p* ¼

p*

rw2
m

Ro;

~x ¼
x

dh
; ~y ¼

y

dh
; ~z ¼

z

l
¼

z

dh

ffiffiffiffiffiffi
Ro

p

ð1Þ

where wm is the mean velocity, dh is the hydraulic diameter of the rectangular duct
defined as dh ¼ 2ab=ðaþ bÞ; where a is the duct width and b is the duct height.
The modified pressure p* is given by:

Figure 1.
Geometric configuration

and coordinate system for
flow analysis

Effect of aspect
ratio

497



p* ¼ p2
1

2
rV2ðx 2 þ z2Þ ð2Þ

and the Rossby number, Ro ¼ wm=Vdh; is a convenient parameter for quantifying the
relative strength of the inertial force to the Coriolis force acting on the fluid. Another
dimensionless parameter KLR ¼ Re=

ffiffiffiffiffiffi
Ro

p
represents the Reynolds number based on

the velocity scale of the secondary flow USR ¼ wm=
ffiffiffiffiffiffi
Ro

p
and length scale dh: If

“weakly rotating” duct flow is assumed for Ro $ 10 (Ito and Nanbu, 1971), the limiting
forms of the governing equations do not include Ro, and the flow characteristics of the
rotating duct are governed only by KLR. This means that the flow fields exhibit an
“asymptotic invariance property” of Ro:

›~u

›~x
þ

›~v

›~y
þ

› ~w

›~z
¼ 0 ð3Þ

›~u

›~t
þ ~u

›~u

›~x
þ ~v

›~u

›~y
þ ~w

›~u

›~z
¼ 2

›~p*

›~x
þ

1

KLR

›2 ~u

›~x 2
þ

›2 ~u

›~y 2

� �
þ 2 ~w ð4Þ

›~v

›~t
þ ~u

›~v

›~x
þ ~v

›~v

›~y
þ ~w

›~v

›~z
¼ 2

›~p*

›~y
þ

1

KLR

›2~v

›~x 2
þ

›2 ~v

›~y 2

� �
ð5Þ

› ~w

›~t
þ ~u

› ~w

›~x
þ ~v

› ~w

›~y
þ ~w

› ~w

›~z
¼ 2

›~p*

›~z
þ

1

KLR

›2 ~w

›~x 2
þ

›2 ~w

›~y 2

� �
ð6Þ

Stationary curved duct
Figure 1(b) shows a toroidal coordinate system ðx; y; z ¼ RuÞ where the radius of
curvature along the duct centerline is represented by R and the finite pitch effect is
negligible. The corresponding absolute velocity components in the radial, spanwise,
and axial direction are represented by (u,v,w), respectively. By applying a similar
procedure that used previously in the analysis of a rotating straight duct, the following
non-dimensional variables are used to derive the dimensionless governing equations
(8)-(11).

~t ¼
wm

dh

ffiffiffi
l

p t; ~u ¼
u

wm

ffiffiffi
l

p
; ~v ¼

v

wm

ffiffiffi
l

p
; ~w ¼

w

wm
; ~p ¼

p

rw2
m

l; ~x ¼
x

dh
;

~y ¼
y

dh
; ~z ¼

z

l
¼

z

dh

ffiffiffi
l

p

ð7Þ

where l ¼ R=dh is the curvature ratio that is an indication of the ratio between the
inertial force and the centrifugal force. In equations (9)-(11), KLC ¼ Re=

ffiffiffi
l

p
represents

the Dean number that provides a measure of the intensity of the secondary flow.
Previous research on finite curvature effects (Ito, 1959; Austin and Seader, 1973)
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demonstrated that the effects of the curvature ratio are practically negligible (i.e.
loosely curved) when l is larger than about eight. Therefore, under those conditions,
equations (8)-(11) are not a function of l and the flow features exhibit an “asymptotic
invariance property” of l. This means that KLC is the sole governing parameter. As a
result, the governing equations (3)-(6) for a “weakly rotating” duct flow are similar to
those of equations (8)-(11) for a “loosely curved” duct flow, except for body force terms
in equations (4) and (9):

›~u

›~x
þ

›~v

›~y
þ

› ~w

›~z
¼ 0 ð8Þ

›~u

›~t
þ ~u

›~u

›~x
þ ~v

›~u

›~y
þ ~w

›~u

›~z
¼ 2

›~p

›~x
þ

1

KLC

›2 ~u

›~x 2
þ

›2 ~u

›~y 2

� �
þ ~w 2 ð9Þ

›~v

›~t
þ ~u

›~v

›~x
þ ~v

›~v

›~y
þ ~w

›~v

›~z
¼ 2

›~p

›~y
þ

1

KLC

›2 ~v

›~x 2
þ

›2~v

›~y 2

� �
ð10Þ

› ~w

›~t
þ ~u

› ~w

›~x
þ ~v

› ~w

›~y
þ ~w

› ~w

›~z
¼ 2

›~p

›~z
þ

1

KLC

›2 ~w

›~x 2
þ

›2 ~w

›~y 2

� �
ð11Þ

Numerical method
A fractional step method is used to obtain the numerical solution of the governing
equations by decoupling the solution of the momentum equations from the solution of
the continuity equation. In the present method, the calculation is carried out in two
steps. The first step (convection-diffusion step) solves for an intermediate velocity field
(with the pressure gradients omitted) by advancing the momentum equations in time
with an implicit ADI method. Then, in order to obtain a divergence-free velocity field,
the velocities are corrected by the pressure gradients at the next time step until the
continuity equation is satisfied (continuity step). For a steady flow analysis, the
solution is advanced in pseudo-time until a converged solution is obtained. The viscous
and pressure gradient terms are discretized using second-order accurate central
differencing, while second-order accurate upwind differencing is used to minimize the
cross-stream numerical diffusion for the convective term. To accelerate the
convergence of the solution to the steady state, locally varying time steps are
applied to the Navier-Stokes equations. The use of a collocated grid simplifies the
implementation of boundary conditions and reduces the additional storage
requirements of the solution variables. At the duct inlet, uniform flow is imposed.
No slip boundary condition is applied at the wall. At the duct exit, second order
extrapolation for velocities is employed.

The solution is assumed to be converged when the residuals of the solution
variables between the current and previous time steps display the six orders of the

Effect of aspect
ratio

499



magnitude drop. A more detailed description of the numerical scheme can be found in
Constantinescu and Patel (1998).

Since, there may be an asymmetric pattern of longitudinal vortices in the cross
sections of the duct as the flow proceeds downstream (Jen and Lavine, 1992), the
present computations are performed over the entire cross-section. Four different grid
sizes for an aspect ratio A ¼ b=a ¼ 2 were used to check the grid independence of the
numerical solution. The grid sizes are 100 £ 25 £ 49; 100 £ 35 £ 69; 100 £ 45 £ 89 and
150 £ 35 £ 69 in the axial, horizontal and vertical direction, respectively. A
non-uniform grid with clustering at the entrance and in the near wall region was
used because the velocity for both the main and secondary flow changes rapidly in
these regions.

Figure 2 shows the axial variation of the dimensionless maximum axial velocity and
the averaged friction factor ratio. Increasing the grid size in the axial direction shows a
negligible difference in the predicted results. Considering the computational time and
the solution accuracy, a grid size of 100 £ 35 £ 69 was selected for A ¼ 2: A similar
grid dependence study was also conducted for the different aspect ratios and the final
grid sizes are summarized in Table I.

Results and discussion
To investigate the effect of aspect ratio on the analogy between developing laminar
flows in an orthogonally rotating straight duct and a stationary curved duct of
rectangular cross-section under the condition that the magnitudes of Ro and l are large
enough for the flow field to satisfy the “asymptotic invariance property” four different
aspect ratios A ¼ 0.25, 0.5, 2 and 4 are considered at KLR ¼ KLC ¼ 125 and Ro ¼
l ¼ 20: Since, the results on the flow similarity for A ¼ 1 were fully presented in a
separate paper (Lee and Baek, 2001), they are not considered here.

General flow patterns
Figure 3 shows the dimensionless axial velocity ðw=wmÞ contours. The upper half of
each duct cross-section shows the stationary curved duct flow, while the lower half
shows the rotating straight duct flow. Therefore, the pressure and suction sides in a
rotating duct flow correspond to the outer (convex) and inner (concave) wall of a
stationary curved duct flow, respectively. For the rotating straight duct flow, as the
dimensionless axial distance ZR increases, by the action of the Coriolis force, the
high-momentum fluid originally located in the central core is convected to the pressure
side of the duct, significantly reducing the thickness of the boundary layers along the
top, bottom and pressure sides, while the low-momentum fluid accumulates along the
suction side, causing the boundary layer thickness to increase there.

In the stationary curved duct flow, similar to the rotating straight duct flow, as the
dimensionless axial distance ZC increases, the location of the maximum axial velocity
shifts toward the outer wall due to the effect of the centrifugal force that acts outwards
from the center of curvature. For A , 1 (A ¼ 0.25 and 0.5), the difference between the
axial velocity distributions for the rotating straight duct and the stationary curved
duct increases as the fluid proceeds downstream. On the other hand, the axial velocity
contours for the two flows are overall coincident for A . 1 (A ¼ 2 and 4).
Figure 4 shows the secondary velocity vectors in the cross-section at the same axial
distances as those used in Figure 3. For the rotating duct, the secondary flow consists
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Figure 2.
Grid independency check:

axial variation of (a) the
maximum axial velocity

and (b) the averaged
friction factors for A ¼

2;KLR ¼ 125 and Ro ¼ 20
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of a counter-rotating double-vortex configuration due to the effect of the Coriolis force.
In the stationary curved duct, since the centrifugal force is proportional to the square of
the axial velocity at a given position, the high momentum flow in the central core
region is subjected to a larger centrifugal force than the slower-moving fluid near the
duct walls. A counter-rotating double vortex is generated to satisfy a momentum
balance and continuity. The two flows have similar secondary flow patterns.

Aspect ratio (A ¼ b/a)
0.25 0.5 2 4

Grid size
Axial 100 100 100 100
Radial 139 69 35 35
Spanwise 35 35 69 139

Table I.
Grid system

Figure 3.
Development of
dimensionless axial
velocity contours at KL ¼
125 and Ro ¼ l ¼ 20
(upper: stationary curved
duct, lower: rotating
straight duct):
Z ¼ 1.16(left);
Z ¼ 3.12(center);
Z ¼ 12.6(right)

HFF
16,4

502



Friction factor
One of the most important practical aspects of duct flow is an accurate prediction of
the friction factor for calculating the pressure loss. Figure 5 shows the axial
variation of the averaged friction factors of these two flows. The friction factors are
normalized by the corresponding value for fully developed flow in a stationary
straight duct.

For the same cross-sectional area, the friction factor ratio at the lower aspect
ratios has a much larger value in the fully developed flow region where the friction
factor ratio approaches a constant value. The reason may be that the enhanced
effects of rotation and curvature at lower aspect ratio increase the intensity of the
secondary flow. The predicted friction factors for the two flows show overall good
agreement.

Other flow features
Figure 6 shows the axial variation of the maximum axial velocity ðwmax=wmÞ: For A.1
the velocity magnitudes for each flow are nearly the same, but the difference between
the magnitudes increases as the aspect ratio is made smaller than one.

Figure 4.
Development of secondary

velocity vectors at KL ¼
125 and Ro ¼ l ¼ 20

(upper: stationary curved
duct, lower: rotating

straight duct);
Z ¼ 1.16(left);

Z ¼ 3.12(center);
Z ¼ 12.6(right)
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Figure 5.
Axial variation of average
friction factor ratio at
KL ¼ 125 and
Ro ¼ l ¼ 20

Figure 6.
Axial variation of
maximum axial velocity
ratio at KL ¼ 125 and
Ro ¼ l ¼ 20
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The axial variation of the normalized maximum value of the secondary flow velocity
VSmax (so-called the intensity of the secondary flow) is shown in Figure 7.
The difference between VSmax for the two flows is greater than that of an integral
property such as the friction factor (Figure 5). The reason is that, as can be seen in
equation (4) and (9), the Coriolis force acting on the fluid is proportional to its velocity,
whereas the centrifugal force acting on the fluid is proportional to the square of its
velocity, and thus the intensities of the secondary flow have a local discrepancy in the
cross-sectional plane. As the aspect ratio decreases, the magnitude of secondary flow
intensity and its difference between the two flows increase. The increasing difference
between the secondary flows for the two flows at the lower aspect ratios may explain
the difference between the axial velocity distributions, as shown in Figure 3.

The axial variation of the normalized maximum value of the stream function cmax is
shown in Figure 8. The maximum value is located at the vortex center represented by a
solid circle in Figure 4. For the same cross-section area, cmax has a relatively large
value at the smaller aspect ratio. In the fully developed region, cmax has the largest
value at A ¼ 0:5 and the smallest value at A ¼ 4: The difference of cmax between the
two flows increases as the aspect ratio decreases.

Conclusions
A numerical study was performed in order to investigate the effect of aspect ratio on
the quantitative analogy between developing laminar flows in orthogonally rotating
straight ducts and stationary curved ducts of rectangular cross-section. Based on the
results obtained in this study, the following conclusions could be drawn:

Figure 7.
Axial variation of

maximum secondary
velocity intensity at KL ¼

125 and Ro ¼ l ¼ 20
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. The validity of the similarity parameters suggested by Trefethen (1957) and
Ishigaki (1999) for circular pipe flow was confirmed for the flows through the
rectangular ducts with aspect ratio A $ 1. That is, KLR and the Rossby number,
Ro, for the laminar flow in orthogonally rotating ducts correspond to the Dean
number, KLC, and the curvature ratio, l, for stationary curved rectangular duct
flows. Here, the hydraulic diameter, dh, was used instead of the pipe diameter, d.

. Under the condition that the aspect ratio was larger than one and that the
magnitude of Ro or l was large enough to satisfy the “asymptotic invariance
property” the quantitative analogy between the two flows was established
clearly. Primary and secondary flow patterns and friction factors were similar for
the same values of KLR and KLC.

. As the aspect ratio decreased below one (A ¼ 0.25 and 0.5), the difference
between the secondary flow intensities of these two flows increased, and
therefore, the analogy between the two flows was not as evident as that for the
larger aspect ratios (A ¼ 2 and 4).

. Based on this methodology, the characteristics of the developing flow in
orthogonally rotating ducts of higher aspect ratio can be predicted by
considering the flow in stationary curved ducts, and vice versa.
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